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1 Mean Shift

The Mean Shift algorithm is a non-parametric technique whose aim is to find local maxima in a high-dimensional
data distribution without computing the latter. Therefore, the main issue is how to efficiently estimate a density
function given a set of samples.

The simpliest way is to smooth the data. A common technique to smooth data is to compute a kernel density
estimation f(x):

f(x) =
∑
i∈I

K(x− xi) =
∑
i∈I

k

(
‖x− xi‖2

h2

)
where (xi)i∈I are the input samples, k the kernel function and h the kernel width. Then, we can find f(x) maxima
with usual optimization techniques (e.g. gradient ascent).

However, f(x) computation can have a too high complexity in high dimensional spaces. Thus, mean shift becomes
useful. The algorithm uses a technique called multiple restart gradient descent, starting from y0 and iterating under
the following procedure (where G is associated with the kernel function g(r) = −k′(r)):

yk+1 = yk + m(yk) with m(x) =

∑
i∈I xiG(x− xi)∑
i∈I G(x− xi)

− x called the mean shift vector

Figure 1: One-dimensional visualization of the kernel density estimate, its derivative, and a mean shift.

It has been proven that this algorithm converges if the kernel k(r) is monotonically decreasing. Two kernels
commonly used for the mean shift algorithm are the Gaussian kernel, and the Epanechnikov kernel, whose formula
is kE(r) = max(0, 1 − r). Therefore, the simpliest way to apply mean shift algorithm is to use the above gradient
procedure at every input point xi, in order to find all local maxima.

In image segmentation, mean shift algorithm is generally used taking into account spatial coordinates and color of
pixels, as with the bilateral filter, through a kernel of the form:

K(xi) = k

(
‖xr‖2

h2r

)
k

(
‖xs‖2

h2s

)
where xs = (x, y) are the spatial coordinates (spatial domain), xr is the color value (range domain), hs (resp. hr) the
spatial (resp. range) bandwith.
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2 Normalized Cuts and Image Segmentation

The Normalized Cut algorithm is an efficient way to segment an image. This algorithm is based on a graph
representation of the image: pixels are vertices and weights (edges) depend on the image (brightness, intensity,
distance or whatever can be useful to segment the image). The vertices could be just a subset of pixels like points of
interest.

Once the graph is computed, the problem is to cut vertices into two disjoint subsets A and B such that weights
from A to B, cut(A,B) =

∑
u∈A,v∈B w(u, v) is minimal. Unfortunately, algorithms tend to make unbalanced sets

(cut(A,B) is smaller if A contains only one element). The idea for this algorithm is to normalize the cut :

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

where assoc(A, V ) =
∑

u∈A,t∈V w(u, t).

It has been proven in [1] that the normalized cut is equivalent to find the eigenvector with the second smallest
eigenvalue for:

(D −W )x = λDx

where, if N = |V |, W ∈ RN×N is the weight matrix and D ∈ RN×N is the diagonal matrix where D(i, i) =
∑

j w(i, j).
Signs of the second eigenvector x decide on the cut (i ∈ A iff x(i) > 0).

Our results: we decided to test this algorithm. Firstly, we worked on a set of points in R2 and we made a graph
where vertices are points and weights are w(x, y) = ||x − y||−12 . We obtained the segmentation shown in Figure 2a
which give good results (the algorithm did not know the colors / the labels of the points).
Then, we decided to work on artificial images and we found two main issues:

• How can we make efficiently (in Python) the graph from the image?

• How can we speed up the algorithm (because the complexity is O(N3) where N = |V |, N = 106 for a 1000×1000
image)?

To solve the first issue, we decided to make a graph only based on colors, i.e. w(x, y) = np.abs(I(x)− I(y)). To solve
the second one, we used sparsed matrix. We obtained great results for two artificial black and white images but results
are awful for real images. Therefore the idea is to change our graph representation.

(a) Results for the cut of two gaussians (b) Perfect results for an artificial and
complex B&W picture

(c) Failure with a real photograph
(coins)

Figure 2: Our results
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