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Introduction

The aim of this project is to highlight the Stochastic Dual Coordinate Ascent
(SDCA), an optimization algorithm for Machine Learning.

It has been proven that solving the dual problem is very effective for Support
Vector Machines (SVM). In this poster, we focused mainly on using this algo-
rithm for Logistic Regression (LR).

This project summarizes a few necessary keys of knowledge in order to un-
derstand the dual problem, before discussing the algorithm and its possible
implementation. Finally, we tested our own implementation against an existing
implementation of LR that solves the primal problem on multiple datasets.

Illustration of Stochastic Gradient Descent

Figure – Illustration of Stochastic Gradient Descent.

Logistic regression example

In order to understand fully the method behind the first paper, let’s take an
example with the logistic regression. We will consider logistic regression only for
binary classification. We use the following usual notations : X ∈ X = Rp the
random variable for the description space, and Y ∈ Y = {−1, 1} the random
variable for the label. We recall that the model is the following :

P(y = 1|X = x)
P(y = −1|X = x)

= wTx, w ∈ Rp

Formulation of dual problem

We want to find w such that it maximizes the likelihood, or log-
likelihood, with a term of regularization :

min
w
C
∑
i

log
(

1 + e−yiw
Txi
)

+ 1
2
wTw

In order to get the dual problem, we rewrite it with an artificial constraint
zi = e−yiw

Txi, and we have the following lagrangian :

L(w, z, α) =
∑
i

(C log (1 + zi) + αizi)−
∑
i

αie
−yiwTxi + 1

2
wTw

We will note w∗ =
∑
iαiyixi and z∗ the variables solution of the

optimization problem
min
w,z
L(w, z, α) = L(w∗, z∗, α) = ψ(α)

In fact, it leads to the following dual problem :

max
α

∑
i∈I

(−αi log (αi)− (C − αi) log (C − αi)−
1
2
αTQα

s.t. I = {i | 0 < αi < C}, 0 ≤ αi ≤ C

We used the notation Q = (Qij)i,j where Qij = yix
T
i xjyj

SDCA optimization problem

Let x1, . . . , xn ∈ Rd, φ1, . . . , φn scalar convex functions, λ > 0 regularization
parameter. Let focus on the following optimization problem :

min
w∈Rd

P (w) =

1
n

n∑
i=1

φi(w>xi) + λ

2
‖w‖2

 (1)

with solution w∗ = arg minw∈Rd P (w).

Moreover, we say that a solution w is εP -sub-optimal if P (w)− P (w∗) ≤ εP .
We analyze here the required runtime to find an εP -sub-optimal solution using
SDCA.

Let φ∗i : R→ R be the convex conjugate of φi : φ∗i (u) = maxz(zu− φi(z)).
The dual problem of (1) is defined as follows :

max
α∈Rn

D(α) =

1
n

n∑
i=1
−φ∗i (−αi)−

λ

2

∥∥∥∥∥∥ 1
λn

n∑
i=1

αixi

∥∥∥∥∥∥
2
 (2)

with solution α∗ = arg maxa∈RnD(α).

If we define w(α) = 1
λn

∑n
i=1 αixi, then we have w(α∗) = w∗, P (w∗) =

D(α∗), ∀(w, α), P (w) = D(α) due to classic optimization results, and the
duality gap P (w(α))− P (w∗).

The SDCA algorithm is described further. T0 can be chosen between 1 to T ,
and is generally chosen equal to T/2. However, in pratice, these parameters are
not required as the duality gap is used to terminate the algorithm.

Losses used

Squared loss :
φi(a) = (a− yi)2, φ∗i (−a) = −ayi + a2/4

∆αi =
yi − x>i w

(t−1) − 0.5α(t−1)
i

0.5 + ‖xi‖2 /(λn))
Absolute deviation loss :

φi(a) = |a− yi| , φ∗i (−a) = −ayi, a ∈ [−1, 1]

∆αi = max

(
1,min

(
1,
yi − x>i w

(t−1)

‖xi‖2 /(λn)
+ α

(t−1)
i

))
− α(t−1)

i

Log loss :
φi(a) = log(1 + exp(−yia))

φ∗i (−a) = −ayi log(ayi) + (1− ayi) log(1− ayi)

∆αi =
(1 + exp(x>i w

(t−1)yi))−1yi − α
(t−1)
i

max(1, 0.25 + ‖xi‖2 /(λn))
(γ-smoothed) Hinge loss :
φi(a) = max{0, 1− yia}

φ∗i (−a) = −ayi + γa2/2, ayi ∈ [0, 1]

∆αi = yi max

(
0,min

(
1, 1− x>i w(t−1)yi − γα(t−1)

i yi

‖xi‖2 /(λn) + γ
+ α

(t−1)
i yi

))
− α(t−1)

i

Difference between SGD and SDCA

A simple approach for solving SVM is stochastic gradient descent (SGD). SGD
finds an εP -sub-optimal solution in time O(1/(λεP )). This runtime does not
depend on n and therefore is favorable when n is very large. However, the SGD
approach has several disadvantages :
1 It does not have a clear stopping criterion
2 It tends to be too aggressive at the beginning of the optimization process,
especially when λ is very small

3 While SGD reaches a moderate accuracy quite fast, its convergence
becomes rather slow when we are interested in more accurate solutions

SDCA Procedure algorithm

Algorithm 1 Procedure SCDA
procedure SCDA(α(0), φ, T0, T )

w(0) ← w(α(0))
for t = 1, . . . , T do

Randomly pick i
Find ∆αi to increase dual (*)
α(t) ← α(t−1) + ∆αiei
w(t) ← w(t−1) + (λn)−1∆αixi

if Averaging option then
return w = 1

T−T0

∑T
i=T0+1w

(t−1)

if Random option then
return w = w(t) for a random t ∈ [|T0 + 1, T |]

(*) corresponds to the following operation :

∆αi← arg max
∆αi
−φ∗i (−(α(t−1)

i +∆αi))−
λn

2

∣∣∣∣ ∣∣∣∣w(t−1) + ∆αixi
λn

∣∣∣∣ ∣∣∣∣2

Choose of output option

Because of the stochastic behavior of the algorithm, the output is very sensitive
to the iteration at which it stops. Indeed, coefficients vary suddenly, and the
convergence is not really monotonous : at some point, it is uncertain whether
the loss improves or not. There are essentially two ways of taking this into
account. We can first stop at a random step. It actually has good results. The
second method consists in averaging the last α(t) obtained by the algorithm,
making sure that the local variations of α are corrected.

Figure – Illustration of the necessity to choose carefully the output.

Study framework

In this study, SDCA is computed either for L-Lipschitz loss functions or for
(1/γ)-smooth loss functions. We recall that a function φi : R → R is L-
Lipschitz if ∀a, b ∈ R, |φi(a)− φi(b)| ≤ L |a− b|, and that a function
φi : R → R is (1/γ)-smooth if it is differentiable and its derivative is (1/γ)-
Lipschitz. Moreover, if φi is (1/γ)-smooth, then φ∗i is γ-strongly convex. The
different loss functions used are described in the corresponding table.

For the sake of simplicity, we consider the following assumptions : ∀i, ‖xi‖ ≤ 1,
∀(i, a), φi(a) ≥ 0 and ∀i, φi(0) ≤ 1. Under these assumptions, we have the
following theorem :

Theorem Consider Procedure SDCA with α(0) = 0. Assume that ∀i, φi is L-
Lipschitz (resp. (1/γ)-smooth). To obtain an expected duality gap of E[P (w)−
D(α)] ≤ εP , it suffices to have a total number of iterations of

T ≥ n + max
(

0,
⌈
n log

(
λn

2L2

)⌉)
+ 20L2

λεP(
resp. T >

(
n + 1

λγ

)
log
[

1
(T − T0)εP

(
n + 1

λγ

)])

Implementations

Our implementation is available here :
https://github.com/GuillaumeDesforges/enpc-malap-project

We first tested SDCA on logistic regression on a simple dataset.

Results on generated data

Figure – Logistic regression on a simple dataset.

Evolution of error

Figure – Convergence of SDCA for logistic regression on a simple
dataset.

Conclusion

SDCA is an alternative way to compute a predictor for huge data sets with
a high number of features. At the time of printing this poster, we did not
have the time to present results for the huge data sets we tested, but our first
experimentation seems to give fast and accurate results, as SDCA is able to
counter issues faced with traditional SGD.
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