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Introduction

In machine learning, the process of fitting a model to the data requires to solve an optimization problem.
The difficulty resides in the fact that this optimization quickly becomes very complex when dealing with
real problems. The Stochastic Gradient Descent (SGD) is a very popular algorithm to solve those problems
because it has good convergence guaranties. Yet, the SGD does not have a good stopping criteria, and its
solutions are often not accurate enough.

The Stochastic Dual Coordinate Ascent (SDCA) tries to solve the optimization problem by solving its
dual problem. Instead of optimizing the weights, we optimize a dual variable from which we can compute
the weights and thus solve the former. This method can give good results for specific problems : for instance,
solving the dual problem of the SVM has proven to be effective and to give interesting results, with a linear
convergence in some cases.

In this report, we compile the key theoretical points necessary to have a global understanding of the SDCA.
First we introduce the SDCA and its principles. We then present the machine learning problem our report
focuses on, and we study computational performances of the method by trying to apply SDCA on concrete
problems. Finally we conclude on SDCA strengths and weaknesses.

Note We added experimentation on real data sets since the presentation of our poster (Section 2).

1 Purpose of the report: a new SGD-like method

1.1 Difference between SGD and SDCA

A simple approach for solving Support Vector Machine learning is Stochastic Gradient Descent (SGD).
SGD finds an εP -sub-optimal solution in time O(1/(λεP )). We say that a solution w is εP -sub-optimal if
P (w)−P (w∗) ≤ εP , where P is the objective function of the primal problem. This runtime does not depend
on n and therefore is favorable when n is very large. However, as explained in the studied articles, the SGD
approach has several disadvantages:

1. it does not have a clear stopping criterion

2. it tends to be too aggressive at the beginning of the optimization process, especially when λ is very
small

3. while SGD reaches a moderate accuracy quite fast, its convergence becomes rather slow when we are
interested in more accurate solutions

Therefore, an alternative approach is Dual Coordinate Ascent (DCA), which solves the dual problem
instead of the primal problem.
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1.2 Formulation of SDCA optimization problem

Let x1, . . . , xn ∈ Rd, φ1, . . . , φn scalar convex functions, λ > 0 regularization parameter. Let us focus on
the following optimization problem:

min
w∈Rd

P (w) =

[
1

n

n∑
i=1

φi(w
>xi) +

λ

2
‖w‖2

]
(1)

with solution w∗ = arg minw∈Rd P (w).

Moreover, we say that a solution w is εP -sub-optimal if P (w)−P (w∗) ≤ εP . We analyze here the required
runtime to find an εP -sub-optimal solution using SDCA.

Let φ∗i : R → R be the convex conjugate of φi : φ∗i (u) = maxz(zu − φi(z)). The dual problem of (1) is
defined as follows:

max
α∈Rn

D(α) =

 1

n

n∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1

λn

n∑
i=1

αixi

∥∥∥∥∥
2
 (2)

with solution α∗ = arg maxa∈Rn D(α).

Moreover, if we define w(α) = 1
λn

∑n
i=1 αixi, thanks to classic optimization results, we then have:

w(α∗) = w∗ (3)

P (w∗) = D(α∗) (4)

We also define the duality gap as P (w(α))−D(α). The SDCA procedure is described in Section 1.4.

1.3 Focus on the logistic regression

In order to fully grasp the method behind the first paper, let’s take an example with the logistic regression.
We will consider logistic regression only for binary classification. We use the following usual notations :
X ∈ X = Rp the random variable for the description space, and Y ∈ Y = {−1, 1} the random variable for
the label. We recall that the model is the following :

P(y = 1|X = x)

P(y = −1|X = x)
= w>x, w ∈ Rp (5)

We want to find w such that it maximizes the likelihood, or log-likelihood, with a term of regularization:

min
w
C
∑
i

log
(

1 + e−yiw
>xi

)
+

1

2
w>w (6)

In order to get the dual problem, we rewrite it with an artificial constraint zi = yiw
Txi, and we have the

following Lagrangian :

L(w, z, α) =
∑
i

(C log (1 + zi) + αizi)−
∑
i

αie
−zi +

1

2
w>w (7)

We will note w∗ =
∑
i αiyixi and z∗ the variables solution of the optimization problem

min
w,z
L(w, z, α) = L(w∗, z∗, α) = ψ(α) (8)
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In fact, it leads to the following dual problem :

max
α

∑
i∈I

(−αi log(αi)− (C − αi) log(C − αi))−
1

2
α>Qα

s.t. I = {i, 0 < αi < C}
0 ≤ αi ≤ C
Qij = yix

T
i xjyj

(9)

Now we got the dual problem, we need to solve a maximization problem. To do so, we will use in this paper
the coordinate ascent method, which consist in optimizing the objective function coordinate by coordinate
(or with groups of coordinates). The SDCA algorithm is described in the next subsection.

1.4 SDCA algorithm

Algorithm 1 Procedure SCDA

procedure SCDA(α(0), φ, T0, T )
w(0) ← w(α(0))
for t = 1, . . . , T do

Randomly pick i

∆αi ← arg max−φ∗i (−(α
(t−1)
i + ∆αi))− λn

2

∥∥w(t−1) + (λn)−1∆αixi
∥∥2 (*)

α(t) ← α(t−1) + ∆αiei
w(t) ← w(t−1) + (λn)−1∆αixi

if Averaging option then
return w = 1

T−T0

∑T
i=T0+1 w

(t−1)

if Random option then
return w = w(t) for a random t ∈ [|T0 + 1, T |]

1.5 Computation of closed forms

In the studied articles, SDCA is computed either for L-Lipschitz loss functions or for (1/γ)-smooth loss
functions. We recall that a function φi : R → R is L-Lipschitz if ∀a, b ∈ R, |φi(a)− φi(b)| ≤ L |a− b|,
and that a function φi : R → R is (1/γ)-smooth if it is differentiable and its derivative is (1/γ)-Lipschitz.
Moreover, if φi is (1/γ)-smooth, then φ∗i is γ-strongly convex. The different loss functions used are described
in the table below. For experimentation, we mainly focused on log loss and square loss. Some loss functions
used in the report are described in appendix A.

1.6 Algorithm termination

For the sake of simplicity, the studied articles consider the following assumptions: ∀i, ‖xi‖ ≤ 1, ∀(i, a), φi(a) ≥
0 and ∀i, φi(0) ≤ 1. Under these assumptions, we have the following theorem:

Theorem Consider Procedure SDCA with α(0) = 0. Assume that ∀i, φi is L-Lipschitz (resp. (1/γ)-
smooth). To obtain an expected duality gap of E[P (w) −D(α)] ≤ εP , it suffices to have a total number of
iterations of

T ≥ n+ max

(
0,

⌈
n log

(
λn

2L2

)⌉)
+

20L2

λεP

(
resp. T >

(
n+

1

λγ

)
log

[
1

(T − T0)εP

(
n+

1

λγ

)])
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2 Experiments

2.1 Implementation

The experiments in this report were done with our own implementation, available on GitHub :

https://github.com/GuillaumeDesforges/enpc-malap-project-sdca

We implemented :

• Estimator objects that can fit, predict and score themselves : logistic loss and square loss

• Optimizer objects used for fitting : SGD and SDCA

• projections : polynomial and gaussian

• some data utilities

2.2 Description of the chosen data sets

We used our implementation on :

• Arrhythmia : https://archive.ics.uci.edu/ml/datasets/Arrhythmia

• Adult : https://archive.ics.uci.edu/ml/datasets/adult

• some other data sets available on scikit-learn: Labeled Faced Wild, Forest covertypes

While the Arrhythmia data set has 452 instances, which is quite low, it has 279 features, which is quite
high. On the other hand, the Adult data set has 48842 instances but only 14 features.

The Arrhythmia data set will help us to check the properties of SDCA when there are high-dimensional
features. The Adult data set will help us to compare the SGD and SDCA when there are a large number of
instances.

2.3 Use of closed forms and numerical issues

In this report, we used the closed form presented above. The closed form for the logistic regression gave
us numerous numerical issues. On some cases, we can end up with catastrophic cancellations due to either
the log or the exp.

A solution that is proposed by another study is to optimize a sub-problem with a modified Newton
algorithm for each iteration, and thus avoid catastrophic cancellations. We implemented this modified
Newton algorithm and tried to use it for the logistic regression on the data sets described above, but of
course computation time was incredibly long comparing to the use of closed forms.

2.4 Choice of algorithm termination option

Because of the stochastic behavior of the algorithm, the output is very sensitive to the iteration at which
it stops. Indeed, coefficients vary suddenly, and the convergence is not really monotonous : at some point,
it is uncertain whether the loss improves or not.

There are essentially two ways of taking this into account. The first method is to stop at a random step,
which actually yields good results. The second method consists in averaging the last α(t) obtained by the
algorithm, making sure that the local variations of α are corrected.
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Another way to stop the algorithm is to use the duality gap, with the theorem described in Section 1.6.
However, as this theorem presents a sufficient condition for the total number of iterations, this number is
much higher than the real total number of iterations needed to have an acceptable duality gap.

Considering this analysis, we decided to choose the average output option and to set manually the number
of iterations needed for our experimentation. As explained in the studied articles, we can note that this
stopping time T0 can be chosen between 1 to T , and is generally chosen equal to T/2. However, in practice,
these parameters are not required as the duality gap is used to terminate the algorithm.

2.5 Choice of hyperparameters

The SGD has two hyperparameters c and eps while the SDCA has only one hyperparameter c. In order
to compare the algorithms, we chose to select the best hyperparameters for each optimizer and for each
data set using a validation procedure with a learning set and a validation set. On every data set, for each
hyperparameter, we computed the accuracy after a given number of epochs for a range of values and a certain
validation set, and plotted them.

Figures are gathered in appendix B. We selected the following hyperparameter values :

Data set SGD c SGD eps SDCA c

Arrhythmia 103 10−5 10−1

Adults 104 5.10−6 5.10−2

Table 1: Hyperparameter values used for each data set.

2.6 Stopping time

With such data sets and hyper parameters, we compute the sufficient stopping time for a dual gap lower
than 10−3.

Data set Sufficient stopping time

Arrhythmia 401549
Adults 629840

Table 2: Sufficient stopping time for each data set.

These values perfectly illustrate the explanation about the sufficient condition in Section 2.4. In practice,
only some tens of thousands, or even less, are sufficient to have a good convergence.

2.7 Comparison between SGD and SDCA on used data sets

We fit a logistic regression model on the data sets with the hyper parameters detailed above. On each data
set, we used 85% of the data for training and 15% of the data for testing. Figures are gathered in appendix
C.

We can see that after a consequent number of iterations, the accuracy of the estimator trained with the
SDCA stops to vary, while the accuracy of the one trained with the SGD continues to vary and reaches
better accuracy levels. In practice, it is highly probable that the SDCA gets trapped in a local minimum.
Indeed, the structure itself of the algorithm makes it impossible to escape.
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While the SGD can perform slight jumps thanks to the learning rate eps, the SDCA only optimizes along
one coordinate. If it is trapped into a local minimum, it cannot vary anymore.

In our experiment, on the one hand the SGD has a better accuracy than the SDCA. On the other hand,
the convergence of the SDCA is much clearer.

(a) Arrhythmia data set (b) Adults data set

Figure 1: Evolution of the accuracy during the learning for the SGD and the SDCA.

Conclusion

In this report, we summarized most of what is needed to understand the SDCA : its goal, its theoretical
framework and its algorithm. While our implementation of the SDCA for logistic regression seems to work,
it did not yield better performance than SGD for our experiments.

On the other hand, the SGD can keep fluctuating when the SDCA really converges. Depending on the
problem, it can be a real advantage. Other tracks need to be investigated in order to improve the performance
of the SDCA, such as the resolution of numerical issues for some losses or the use of the SDCA on other
data sets.
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A Losses used

Used loss functions, convex conjugates and closed form of solutions of problem (*):

• Squared loss:
φi(a) = (a− yi)2

φ∗i (−a) = −ayi + a2/4

∆αi =
yi − x>i w(t−1) − 0.5α

(t−1)
i

0.5 + ‖xi‖2 /(λn))

• Log loss:
φi(a) = log(1 + exp(−yia))

φ∗i (−a) = −ayi log(ayi) + (1− ayi) log(1− ayi)

∆αi =
(1 + exp(x>i w

(t−1)yi))
−1yi − α(t−1)

i

max(1, 0.25 + ‖xi‖2 /(λn))

• Absolute deviation loss:
φi(a) = |a− yi|

φ∗i (−a) = −ayi, a ∈ [−1, 1]

∆αi = max

(
1,min

(
1,
yi − x>i w(t−1)

‖xi‖2 /(λn)
+ α

(t−1)
i

))
− α(t−1)

i

• (γ-smoothed) Hinge loss:
φi(a) = max{0, 1− yia}

φ∗i (−a) = −ayi + γa2/2, ayi ∈ [0, 1]

∆αi = yi max

(
0,min

(
1,

1− x>i w(t−1)yi − γα(t−1)
i yi

‖xi‖2 /(λn) + γ
+ α

(t−1)
i yi

))
− α(t−1)

i

∆αi is the notation we use to represent the increment to add to αi (one coordinate, at a given iteration)
to maximize the objective function with respect to that coordinate.
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B Hyperparameters validation

(a) c for the SGD for the data set Arrhythmia (b) c for the SGD for the data set Adults

(c) eps for the SGD for the data set Arrhythmia (d) eps for the SGD for the data set Adults

(e) c for the SDCA for the data set Arrhythmia (f) c for the SDCA for the data set Adults

Figure 2: Selection of the hyperparameters c and eps for the SGD and the SDCA.

8



(a) h for the SGD for the data set Arrhythmia (b) h for the SGD for the data set Adults

(c) h for the SDCA for the data set Arrhythmia (d) h for the SDCA for the data set Adults

Figure 3: Selection of the gaussian projection hyperparameter h for the SGD and the SDCA.
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C Experimental results

(a) Arrhythmia data set with SGD (b) Adults data set with SGD

(c) Arrhythmia data set with SDCA (d) Adults data set with SDCA

Figure 4: Evolution of the loss during the learning for the SGD and the SDCA.
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